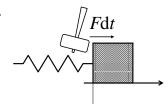
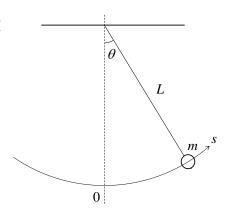
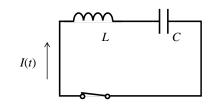

学籍番号	氏名		得点	
※指定が無い限り,重力加	速度の大きさを	gとせよ.		
Q1: 以下の空欄を埋めなる	さい. <u>一重下線</u>	_ は数式・記号, <u>二重下線</u> は	文字が入る(5	×4=20).
質点に働く力が原点からの	D	に比例し、かつ	の方	向を向くと
き,質点は「単振動」を行う	. 運動方程式は	x ,変位を x ,定数を ω^2 とし	て	ع
書ける.これは2階線形斉	次微分方程式/	ぎが,一般解は <i>x</i> =		(A


Q2. 摩擦の無い水平な床面で質量 m のおもりをばね定数 k のばねにつなぎ,図のように固定した.運動は 1 次元のx(t) とする.

Bは任意定数)と書ける. これは暗記すること.


(1) おもりを平衡位置から正の方向にL伸ばし、t=0で静かに離した。運動を決定せよ(10)。

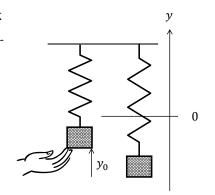
(2)一旦おもりを原点で静止させ、t=0 で、おもりを金槌で叩いて x 方向の力積Fdtを与えた.運動を決定せよ(10).


Q3: おもりの質量がm, 長さLの振り子について考える.

(1) 解くべき変数を、おもりの位置を鉛直から軌道にそって測った距離 sとする. s に関する運動方程式を立てなさい. ここで、角度 θ をs の 関数に変換すること(10).

(2) t=0 でおもりを s= s0 から静かに放したとして, s(t)を決定せよ. ただし, 角度は充分小さいとして, 運動方程式を線形化せよ(10).

Q4: 図のような LC 直列回路にキルヒホッフの法則を適用すると $\frac{1}{c}\int I\mathrm{d}t + L\frac{\mathrm{d}I}{\mathrm{d}t} = \mathbf{0}$ を得る. ここでIは回路に流れる電流である.



(1) Iについての微分方程式を立てよ.

(2) この回路の角振動数を答えよ.

Q5: 図のように、質量mのおもりをばね定数kのばねで吊るして静止させ、その後おもりを y_0 だけ押し上げて静かに放すとおもりは単振動する。おもりの平衡位置を原点に、鉛直上を正にy軸を取る。

(1) 運動方程式を立てよ.

(2) おもりの運動を決定せよ.